Yibo Peng

J 1-412-508-0360 **▼** yibopcmu@gmail.com

linkedin.com/in/yibo-peng-cs

pppyb.github.io

Yibo Peng

Education

Carnegie Mellon University

Pittsburgh, PA

Master of Science in Artificial Intelligence Engineering GPA: 3.83/4.0 Aug 2023 - Dec 2024

Beijing Jiaotong University & Lancaster University

Beijing, CN & Lancaster, UK

Bachelor of Science in Computer Science (Honours)

Aug 2018 - July 2022

Publications & Patents

- Y. Peng*, J. Song*, L. Li*, R. Mangal, M. Christodorescu, C. Pasareanu, H. Zheng, B. Chen. "When "Correct" Is Not Safe: Can We Trust Functionally Correct Patches Generated by Code Agents?" International Conference on Learning Representations (ICLR), 2026 (Under Review). [arXiv]
- P. Xia*, Y. Peng*, J. Wang*, K. Zeng, X. Wu, X. Tang, H. Zhu, Y. Li, S. Liu, Y. Lu, H. Yao. "MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning," International Conference on Learning Representations (ICLR), 2026 (Under Review). [arXiv]
- Y. Peng, Z. Wang, D. Fried. "Can Long-Context Language Models Solve Repository-Level Code Generation?" LTI Student Research Symposium, 2025 (Poster). [arXiv]
- B. Hu, "Intelligent Home Standards and Technologies." Human-Computer Interaction Application & Entertainment Type Equipment. Ed. Y. Peng, Beijing: Tsinghua University Press, 2022. 144-155 & 212-247.
- Y. Tian, Z. Li, Y. Peng, 2021. Automatic control system and network of circulating water degassing devices. CN Patent Application 202120168813.7, filed January 2021.

Research Experience

Carnegie Mellon University

Pittsburgh, PA

Adversarial Code Agent Research Advisor: Beidi Chen May 2025 - Present

- Designed and implemented FCV-Attack, a novel black-box, single-query attack that injects semantic, CWE-targeted suggestions into GitHub issue descriptions to induce code agents into generating patches that pass all functional tests while embedding exploitable vulnerabilities.
- Achieved an Attack Success Rate (ASR) of up to 56.3% against industry-leading agent-model combinations, revealing a critical security blind spot in current code agent evaluation paradigms.
- Built a reproducible evaluation pipeline based on SWE-bench to systematically analyze the vulnerabilities of 12 leading code agent (e.g., SWE-Agent, OpenHands) and large language model (e.g., GPT, Claude) combinations.
- Demonstrated that the attack succeeds primarily by contaminating the model's internal state (e.g., KV cache) rather than altering observable behaviors, proving the insufficiency of existing behavior-level defenses.

All Hands AI Pittsburgh, PA

Graduate Research Assistant Advisor: Graham Neubig Feb 2025 - May 2025

- Developed and implemented a semantic code search tool with RAG capabilities for the OpenHands agent framework, enabling AI agents to effectively search and utilize existing codebases.
- Built a complete RAG pipeline using sentence transformers and FAISS for efficient similarity search, supporting configurable embedding models and repository indexing with save/load functionality.

UNC & Microsoft Research

Chapel Hill, NC & Shanghai, CN (Remote)

Research Intern Advisor: Huaxiu Yao

Jan 2025 - May 2025

- Developed MMedAgent-RL, a reinforcement learning framework optimizing multi-agent collaboration for medical visual reasoning that simulates clinical GP \rightarrow Specialist \rightarrow GP workflows.
- Designed curriculum-based reinforcement learning strategy enabling attending physicians to progressively learn from specialist knowledge while addressing specialist inconsistencies.
- Achieved state-of-the-art performance across five medical VQA datasets, outperforming both proprietary models like GPT-40 and previous multi-agent systems by 20.7% over SFT baselines.

Carnegie Mellon University

Pittsburgh, PA

Repository-Level Code Generation Research Advisor: Daniel Fried

Aug 2024 - Jan 2025

- Conducted a systematic comparison of Long-Context (LC) and Retrieval-Augmented Generation (RAG) approaches for repository-level code generation using CodeLlama-7B and Claude-3.5-sonnet.
- Discovered that LC can outperform RAG for small, well-structured repositories (less than 40k tokens), while RAG remains superior for larger codebases with complex dependencies.
- Identified that **context organization** is more critical than chunking strategies, with semantic-based ordering significantly improving LC performance across all repository sizes.

Industry Experience

PricewaterhouseCoopers LLP (PwC)

Beijing, CN

Development Engineer Intern - Quantitative Model Expert Team

Nov 2021 - Apr 2022

- Developed a large VBA application to assess and calculate Expected Credit Loss (ECL) of accounts receivable.
- Reduced calculation time from 15 minutes to 10 seconds by transitioning calculations to the database.
- Improved code efficiency by simplifying loops, reducing global variable usage, and optimizing function calls.
- Collaborated with cross-functional teams to integrate the model and over 230 listed companies used it.