YIBO PENG

J 1-412-508-0360

yibop@andrew.cmu.edu

linkedin.com/in/yibo-peng-cs

github.com/pppyb

Education

Carnegie Mellon University

Pittsburgh, PA

Master of Science in Artificial Intelligence Engineering GPA:3.74/4.0

(Expected) Aug 2023 - Dec 2024

Beijing Jiaotong University & Lancaster University

Beijing, CN & Lancaster, UK

Bachelor of Science in Computer Science (Honours) Rank: 10/98

Aug 2018 - July 2022

Research Experience

Language Technologies Institute, Carnegie Mellon University

Pittsburgh, PA

Evaluating LCMs vs. RAG for Code Generation, Advisor: Graham Neubig & Daniel Fried

Aug 2024 - Present

- Implemented an experimental framework to compare long context models with **Retrieval-Augmented**Generation (RAG) for code generation, using Unlimiformer to extend model's input context lengths.
- Conducted experiments adjusting context lengths to explore their impact on code generation quality, identifying optimal ranges and revealing trade-offs between context length and noise.
- Demonstrated that RAG maintained **superior performance** over long context models, highlighting its effectiveness in organizing and utilizing large-scale information even when extensive context is available.

Language Technologies Institute, Carnegie Mellon University

Pittsburgh, PA

Unlimiformer: Long-Range Transformers with Unlimited Length Input

June 2024 - Aug 2024

- Reproduced **Unlimiformer** to extend input length in code generation tasks, using **k-nearest neighbors** (**kNN**) retrieval to handle long-distance inputs without increasing computational complexity.
- Introduced Repocoder RAG method for retrieval and tailored to the code snippets of code generation.
- Improved model performance with Unlimiformer, achieving significant gains in EM (Exact Match) and ES (Evaluation Score) when handling input sequences beyond the original context length limit.
- Integrated Unlimiformer into various encoder-decoder models, including LLaMA series models.

Language Technologies Institute, Carnegie Mellon University

Pittsburgh, PA

Repo Coder: Repository-Level Code Completion Through Iterative Retrieval and Generation

April 2024 - June 2024

- Set up an experimental environment for testing, including line, API, and function level code completion tasks.
- Enhanced retrieval strategy to analyze code generation performance on state-of-the-art LLM.
- Optimized the retrieval-generation pipeline through adding the prompt length which improved retrieval quality and increased the EM (Exact Match) score by over 5 % compared to the original baseline.

ECE Department, Carnegie Mellon University

Pittsburgh, PA

Speculative Decoding with LLM

May 2024 - Jul 2024

- Implemented the Speculative Decoding algorithm, improving inference speed for large Transformer models through parallel computation, achieving **2-3x** acceleration in practical tests.
- Designed KV Cache optimization to reduce memory bandwidth bottlenecks and enhance inference efficiency.
- Applied the acceleration technique to code generation tasks, conducting experimental validation using Salesforce Codegen model series (ranging from 350M to 6B parameters).

Work Experience

PricewaterhouseCoopers LLP (PwC)

Beijing, CN

Development Engineer Intern - Quantitative Model Expert Team

Nov 2021 - Apr 2022

- Developed an large VBA application to assess and calculate Expected Credit Loss(ECL) of accounts receivable.
- Reduced calculation time from 15 minutes to 10 seconds by transitioning calculations to the database.
- Improved code efficiency by simplifying loops, reducing global variable usage, and optimizing function calls.
- Collaborated with cross-functional teams to integrate the model and over 230 listed companies used it.

Publication & Patent

- B. Hu, "Intelligent Home Standards and Technologies." Human-Computer Interaction Application & Entertainment Type Equipment. Ed. Y. Peng, Beijing: Tsinghua University Press, 2022. 144-155 & 212-247.
- Y. Tian, Z. Li, Y. Peng, 2021. Automatic control system and network of circulating water degassing devices. CN Patent Application 202120168813.7, filed January 2021.